

	Extracellular Matrix
25%	Water
25%	Protein or organic matrix
	95% Collagen Fibers
	5% Chondroitin Sulfate
50%	Crystalized Mineral Salts
	Hydroxyapatite (Calcium Phosphate crystals)
	Other substances: Lead, Gold,
	Strontium, Plutonium, can be incorporated in etc.
RA	TIO OF ORGANIC TO NON ORGANIC MATRIX:
	Youth = 1:1, 50%:50%
	Adult = 1:2, 33%:66%
	Elderly = 1:3, 25%:75%
	(bones become more brittle as we age).

BONE FORMATION

- All embryonic connective tissue begins as mesenchyme.
- Bone formation is termed *osteogenesis* or *ossification* and begins when mesenchymal cells provide the template for subsequent ossification.
- Two types of ossification occur.
 - *Intramembranous ossification* is the formation of bone directly from or within fibrous connective tissue membranes.
 - *Endochondrial ossification* is the formation of bone from hyaline cartilage models.

Two Kinds of Ossification

- 1. Intramembranous Ossification
- 2. Endochondral Ossification

Intramembranous Ossification

Also called dermal ossification because it normally occurs in the deeper layers of connective tissue of the dermis of the skin.

• All roofing bones of the Skull

Frontal bone Parietal bones Occipital bone Temporal bones

- Mandible
- Clavicle

Endochondral Ossification

Developing bones are deposited as a hyaline cartilage model and then this cartilage is replaced by bone tissue.

All bones of the body except:

- All roofing bones of the Skull
- Mandible
- Clavicle

Growth at epiphyseal plates

Zones of epiphyseal plates

Zone of Resting Cartilage Zone of Proliferating Cartilage Zone of Hypertrophic Cartilage Zone of Calcified Cartilage

Growth in Thickness

- Bone can grow in thickness or diameter only by *appositional growth*.
- The steps in these process are:
 - Periosteal cells differentiate into osteoblasts which secrete collagen fibers and organic molecules to form the matrix.
 - Ridges fuse and the periosteum becomes the endosteum.
 - New concentric lamellae are formed.
 - Osetoblasts under the peritsteum form new circumferential lamellae.

Factors That Affect Bone Growth Minerals Vitamins Hormones Exercise

Factors That Affect Bone Growth

Minerals

Calcium

Makes bone matrix hard

Hypocalcemia: low blood calcium levels.

Hypercalcemia: high blood calcium levels.

Dietary Source	Serving size	Amount in (mg)
Yogurt (fat free/low fat)	8oz	487/447
Sardines	3.75oz	351
Ricotta cheese	½ cup	337
Skim milk	8oz	302
Orange juice (fortified)	8oz	300
Low fat Milk (1%)	8oz	300
Dried figs	10	270

Infants		
Birth - 6 months	210 mg	
6 months - 1 year	270 mg	
1 - 3 years	500 mg	
4 - 8 years	800 mg	
9 - 18 years	1,300 mg	
19 - 50 years	1,000 mg	
50 +	1,200 mg	
18 years or younger	1,300 mg	
19 - 50 years	1,000 mg	
Source: National Academy	Source: National Academy of Sciences 1997.	

Nutrient	Effect on Bone Development	Dietary Source
Boron	Enhances calcium absorption and estrogen metabolism	avocado, nuts, peanuts, and prune juice
Fluoride	Stimulates bone and tooth development	fluoridated water, marine fish, teas, dental products
Magnesium	Enhances bone quality and improves bone density	green leafy vegetables, potatoes, nuts, seeds, whole grains, bananas
Phosphorus	Combines with calcium to form Hydroxyapatte	milk, yogurt, ice cream, peas, eggs, meat, breads
Manganese	Acts a coenzyme to form optimal bone matrix	Nuts, legumes, tea, whole grains

Factors That Affect Bone Growth

	Vitamins
Vitamin A	Controls activity, distribution, and coordination of osteoblasts/osteoclasts
Vitamin B12	May inhibit osteoblast activity
Vitamin C	Helps maintain bone matrix, deficiency leads to decreased collagen production which inhibits bone growth and repair
	(scury) disorder due to a lack of Vitamin C
Vitamin D	(Calcitriol) Helps build bone by increasing calcium absorption.
	Deficiencies result in "Rickets" in children

Factors That Affect Bone Growth

Hormones

Human Growth Hormone	Promotes general growth of all body tissue and normal growth in children
Insulin-like Growth Factor	Stimulates uptake of amino acids and protein synthesis
Insulin	Promotes normal bone growth and maturity
Thyroid Hormones	Promotes normal bone growth and maturity
Estrogen and Testosterone	Increases osteogenesis at puberty and is responsible for gender differences of skeletons

Bone Fractures

- **Closed fracture:** one that does not produce an open wound in the skin
- **Open fracture:** one in which a wound through the adjacent or overlying soft tissues communicates with the site of the break.
- **Compound fracture:** A fracture in which the bone is sticking through the skin. Also has been called an open fracture.
- **Simple fracture** : an uncomplicated fracture in which the broken bones to not pierce the skin. Also has been called a closed fracture.
- **Comminuted fracture:** The bone is splintered or crushed, Can be viewed as a "closed compound fracture"

Bone Fractures

- **Colles' fracture:** fracture of the lower end of the radius, the lower fragment being displaced backward
- **Greenstick fracture:** one side of a bone is broken, the other being bent. Most common in children.
- **Impacted fracture** one bone fragment is firmly driven into the other. Common with vertebra.
- **Pathologic fracture:** due to weakening of the bone structure by pathologic processes, such as neoplasia, osteomalacia, or osteomyelitis
- **Pott's fracture:** fracture of the lower part of the fibula, with serious injury of the lower tibial articulation, usually a chipping off of a portion of the medial malleolus, or rupture of the medial ligament

Steps in Fracture Repair

1. Formation of a fracture hematoma

Immediately after the fracture, there is a sharp fracture line with associated soft tissue swelling. At the fracture Site, there is abundant hematoma with beginning fibroblastic penetration.

Steps in Fracture Repair

2. Fibrocartilaginous Callus Formation

At 2 weeks there is much visible callus. There is also bone resorption and osteoporosis, both difficult to see in this case because of the overlying callus. There has been migration of chondroblasts into the area and cartilage is beginning to cover the ends of the fracture. New osteous tissue is produced enchondrally.

Steps in Fracture Repair

4. Bone Remodeling

At 5-6 months, the marrow cavity is continuous and the compact bone of the diaphysis has been reformed.

Bon	e Disorders	
Osteopenia: Refers to bon lower than normal p enough to be classif	e mineral density (BMD beak BMD but not low ied as osteoporosis) that is
Osteoporosis: Loss of both Increased osteoclas decreased osteoblas	bone salts and collagen t activity and t activity	ı fibers.
Risk Factors:		
European/Asian ancestry	Family history	Small body build
Inactive lifestyle excessive use of alcohol (African American and Hisp prolonged use of certain m	Cigarette smoking a diet low in calcium panic women are at low pedications, such as thos	early menopause advanced age er but significant risk se used to treat lupus
asthma, thy	roid deficiencies, and se	izures.

Bone Disorders

Osteomalacia: Loss of bone salts but not collagen (demineralization) due to poor diet, decreased absorption of calcium, and vitamin D deficiency. Basically a demineralization of bone

Example: *Rickets in young children*

Bone Disorders

Paget's Disease: Abnormal bone remodeling resulting in irregular thickening and thinning of bone through remodeling
Osteomyelitis: Infection of bone most commonly by Staphylococcus aureus
Osteogenic sarcoma: Bone cancer that affects osteoblasts at the metaphyses of long bones. Most common in teenagers

Rheumatoid Arthritis

- Rheumatoid arthritis is a chronic inflammatory disorder that most typically affects the small joints in your hands and feet. Unlike the wear-and-tear damage of osteoarthritis, rheumatoid arthritis affects the lining of your joints, causing a painful swelling that can eventually result in bone erosion and joint deformity.
- Risk factors
- Sex. Women are more likely to develop rheumatoid arthritis than men are.
- Age. Rheumatoid arthritis can occur at any age, but it most commonly begins between the ages of 40 and 60.
- **Family history.** If a member of your family has rheumatoid arthritis, you may have an increased risk of the disease..
- **Smoking.** Smoking cigarettes increases your risk of rheumatoid arthritis. Quitting can reduce your risk.

Bone Disorders

Infectious arthritis: Lyme's disease

Lyme disease is the most common tick-borne disease in the Northern Hemisphere. It is caused by at least three species of bacteria belonging to the genus *Borrelia*, *Borrelia burgdorferi* is the predominant cause of Lyme disease in the United States, whereas *Borrelia afzelii* and *Borrelia garinii* are implicated in most European cases.

Borrelia is transmitted to humans by the bite of infected hard ticks belonging to several species of the genus *Ixodes*. Early manifestations of infection may include <u>fever</u>, <u>headache</u>, <u>fatigue</u>, <u>depression</u>, and a characteristic skin rash called <u>erythema migrans</u>. Left untreated, late manifestations involving the joints, heart, and nervous system can occur. In a majority of cases, symptoms can be eliminated with antibiotics, especially if diagnosis and treatment occur early in the course of illness. Late, delayed, or inadequate treatment can lead to late manifestations of Lyme disease which can be disabling and difficult to treat.

The disease only became apparent in 1975 when mothers of a group of children who lived near each other in Lyme, Connecticut, made researchers aware that their children all were diagnosed with **rheumatoid arthritis**.

